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Abstract. The paper presents and compares two ap-
proaches to design fault-tolerant evolvable hardware: 
one based on the fitness definition and the other based 
on the population statistics. The fitness approach 
defines, in an explicit way, the faults that the compo-
nent may encounter during its life time and evaluates 
the average behavior of the individuals. The popula-
tion approach uses the implicit information of the 
population statistics accumulated by the genetic algo-
rithm over many generations.  The paper presents 
experiments done using both approaches on a fine-
grained CMOS Field Programmable Transistor Ar-
ray (FPTA) architecture for the synthesis of a fault-
tolerant XNOR digital circuit. Experiments show that 
the evolutionary algorithm is able to find a fault-
tolerant design for the XNOR function that can re-
cover functionality when lost due to not a-priori 
known faults, by finding new circuits configurations 
that circumvent the faults. Our preliminary experi-
ments show that the population approach designs a 
fault-tolerant circuit with a better performance and 
in less computation than the fitness based approach.   

1. Introduction 

Long-term survivability of space systems, as required 
for example by outer solar system exploration and 
missions to comets and planets with severe 
environmental conditions, has recently been approached 
with new ideas, such as the use of biology-inspired 
mechanisms for hardware adaptation. The application of 
evolution-inspired formalisms to hardware design and 
self-configuration lead to the concept of evolvable 
hardware (EHW). In the narrow sense EHW refers to 
self-reconfiguration of electronic hardware by 
evolutionary/genetic reconfiguration mechanisms. In a 
broader sense EHW refers to various forms of hardware, 
from sensors and antennas to complete evolvable space 
systems that could adapt to changing environments and, 
moreover, increase their performance during the 
mission. 

EHW can bring one main benefit to spacecraft 
survivability by preserving existing functions, in 
conditions where hardware is subject to faults, aging, 
temperature drifts and radiation, etc. The fault-tolerant 

property is extremely important for electronic 
components used in the space and nuclear industry 
where the components are continuously subjected to ion 
radiation. As the limits of VLSI technology are pushed 
towards sub-micron levels in order to achieve higher 
levels of integration, devices become more vulnerable to 
radiation induced errors. These radiation induced erros 
can lead to system failure. One of the goals of the future 
electonics is to design radiation immune electronic 
components [20].  

We propose to produce electronic systems that are 
inherently insensitive to faults such as silicon defects by 
using evolution in hardware to design fault-tolerant or 
highly reliable systems. The evolution is even able to on-
line self-repair by changing the circuit configuration in 
short delay or off-line self-repair by pushing further the 
evolution and exploiting defective components as if they 
were working parts [15] [16]. This paper reports on 
experiments that illustrate how evolutionary algorithms, 
using two different approaches, can design fault-tolerant 
digital circuit and recover functionality when lost due to 
faults, by finding new circuit configurations that 
circumvent the faults immediately in hardware. 

A variety of circuits have been synthesized through 
evolutionary means. For example, Koza used Genetic 
Programming (GP) to grow an “embryonic” circuit to 
one that satisfies desired requirements [1]. This approach 
was used and extended for evolving a variety of circuits, 
including filters and computational circuits [2]. On-chip 
evolution was demonstrated for the first time by Higuchi 
[27]. Later Thompson [3] used an FPGA as the 
programmable device, and a Genetic Algorithm (GA) as 
the evolutionary mechanism and Kajitani [26] used a 
dedicated hardware integrating the GA computation and 
a reconfigrable hardware. More details on current work 
in evolvable hardware are found in [4], [5], [6], [7], [24]. 
More recently, evolutionary experiments were performed 
on Field Programmable Analog Arrays [18] and custom-
designed ASIC [11][25]. Evolutionary algorithms have 
also been used with success for designing fault-tolerant 
system, such as robotics [15][21] and recently also in 
electronics [16][23][22].  

This paper is organized as follows: Section 2 presents 
the fault tolerant principles and the evolutionary method 
to obtain fault-tolerant systems. Section 3 presents the 
FPTA concept and the experimental setup. Section 4 
describes the fault tolerant experiments using a cascaded 



FPTAs to design a XNOR logical function. Section 5 
presents some lessons learned from the experiments and 
section 6 concludes the paper. 

2. Fault Tolerant Principles for Evolvable 
Hardware 

The definition of fault tolerance is simply that a fault in 
a component does not cause the overall system to 
malfunction [14]. The malfunction is in general a loss of 
service that can be total or partial as for example on a 
computer network. The characteristic of fault tolerance is 
not absolute. The question is one of degree: how much 
tolerance to faults is required varies from application to 
application. In our electronic experiment, the 
malfunction is calculated by the mean square error 
between a desired output DC characteristic and the 
actual output. 

Fault tolerant systems are evaluated by two criteria: 
their reliability and their availability. The reliability 
measures how long can the system operate before 
malfunctioning even in the presence of faulty 
components. The availability measures the expected 
proportion of time that the system will be available for 
use. In our experiment on electronic device, the 
reliability of the circuit is measured by evaluating the 
malfunction of the electronic device when injecting 
faults. The availability is measured by calculating the 
time needed by the evolution process to retrieve a 
satisfactory circuit design. 

Two principles for designing fault-tolerant systems can 
be applied for evolutionary design: redundancy and on-
line repair. The redundancy concept is well understood: 
if part of a system fails, there is an "extra" or spare" that 
is able to operate in the place of the failed component 
such that the operation of the system is uninterrupted. 
The on-line repair imposes that the system with a failed 
component should be made unavailable as less as 
possible while the system is in service. These two 
principles can be applied to fault-tolerant evolutionary 
design. First, redundancy is obtained by using a circuit 
with a large number of connections and elements 
(transistors). Second, the on-line repair is obtained by 
searching, in the population, for a correct circuit, or by 
running the GA during a limited number of generations.  

Two different approaches were proposed to build fault 
tolerant system using evolutionary algorithms: 
1. Fitness Based Fault-Tolerant Design: it consists of 

injecting during the evolutionary process, the faults 
known a-priori that may occur in the circuit during its 
life-time [19]. 

 
2. Population Based Fault-Tolerant Design: it consists 

of extracting from a population of evolved circuits, the 
individual which adequately performs a desired func-
tionality in the presence of a fault and eventually con-

tinue the evolution to attain a performance equal to 
that before the fault occurred [16]. 

 
While in the population based approach no previous 

knowledge of the faults that may occur is assumed, the 
fitness based approach requires a-priori knowledge of the 
defects. We will show in this paper that the population 
fault-tolerant approach using the population statistics 
accumulated by the genetic algorithm performs better 
than the fitness fault-tolerant approach. In the following 
section we present the FPTA and the evolutionary 
platform on which we conduct the experiments. Then the 
e periments and their results are described. 

3. Test Bed for FPTA 

The idea of a programmable transistor array was 
introduced first in [11]. The FPTA cell is an array of 
transistors interconnected by programmable switches. 
The status of the switches (ON or OFF) determines a 
circuit topology and consequently a specific response. 
Thus, the topology can be considered as a function of 
switch states, and can be represented by a binary 
sequence, such as “1011… ”, where by convention one 
can assign 1 to a switch turned ON and 0 to a switch 
turned OFF. The FPTA architecture allows the 
implementation of bigger circuits by cascading FPTA 
cells. To offer sufficient flexibility the module has all 
transistor terminals connected via switches to expansion 
terminals (except those connected to power and ground). 
Figure 1 illustrates an example of a FPTA cell consisting 
of 8 transistors and 24 programmable switches. In this 
example the transistors P1-P4 are PMOS and N5-N8 are 
NMOS. A test chip implementing the FPTA architecture 
was developed. The programmable switches were 
implemented with transistors, acting as simple T-gate 
switches. Each chip contains one FPTA module and was 
fabricated as a Tiny Chip through MOSIS, using 0.5-
micron CMOS technology. The test board with four 
chips mounted on it is illustrated in Figure 3.  
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Figure 1. Module of the Field Programmable Transistor Array 

Cell 

An evolutionary design tool was developed to facilitate 
experiments in hardware evolution [17]. The tool 
illustrated in Figure 2 uses the public domain Parallel 
Genetic Algorithm package, PGAPack and an evovable 
hardware test bed built around LabView. An interface 
code links the GA with the hardware where potential 
designs are evaluated, while a GUI allows easy problem 
formulation and visualization of results. At each 
generation the GA produces a new population of binary 
chromosomes, which get converted into configuration 
bits for the reconfigurable devices. Configuration bits are 
further downloaded into the hardware device by 
LabView. Circuit evolutionary synthesis directly on the 
chip became possible at an expected accelerated pace of 
over two orders of magnitude compared to the simulation 
on a workstation 

 

 

Figure 2. Environment for evolutionary hardware design. 

 

4. Fault-Tolerant Experiments 

The aim of this experiment was to test and compare the 
reliability and availability of a circuit design obtained by 
respectively a population and a fitness based evolution. 
The experiment setup consists of two cascaded FPTAs 
each programmed by 24 internal swiches. The 2 FPTA 
are connected together by 6 external wires controlled by 
6 programmable switches (Figure 3). Each FPTA is 
connected through 4 programmable switches to two input 
voltages, one current bias and one output load. There are 
a total of 62 switches controlling the 2 cascaded FPTAs 
and representing the chromosome for the GA (Figure 4).  
 

 

Figure . 3. A test board with 2 cascaded FPTAs (The two 
FPTAs used in the experiment are on the left side of the pic-

ture) 

The experiment consisted of the evolutionary design of 
a XNOR logical function using two square wave voltage 
inputs, at frequency of 50Hz and 100Hz respectively 
(Figure 5). The fault tolerance test encompassed the 
introduction of six single faults on the external wires 
connecting the 2 FPTAs by imposing the switches to be 
ON (short fault) or OFF (cut fault). The evaluation 
function is the MSE between the output response of the 
circuit obtained by evolution and the ideal output signal 
of a XNOR logical function. 

The experiments used a Genetic Algorithm (GA) with 
the following parameters: population 200, tournament 
selection of size 10; uniform mutation probability: 0.04, 
uniform cross-over probability: 0.7, elite strategy: 10%, 
fitness function: mean square error. The GA obtained the 
XNOR response in 60 generations, taking 3 minutes. 

1. Population Fault-Tolerant Evolution 

Evolution started by randomly initiating the population 
chromosomes, which were transformed into connection 
patterns. These are downloaded into the chips and the 
output of the generated circuits was directly monitored 
and compared with the desired DC XNOR response. 
After 60 generations a circuit that satisfied the 
requirements was found and is shown in Figure 6. 
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Figure . 4. Cascaded FPTAs used to design a fault-tolerant  XNOR circuit with 62 switches. The 6 connections indicated by a circle 
are subjected to faults. (CUT: switch OFF: fault 0, fault 3, fault 5) (SHORT: switch ON: fault 1, fault 2, fault 4) 

 

 
 
Figure  5. Input Signal 1(100Hz), Input Signal 2 (50Hz) and the Output Signal of the XNOR circuit configuration. (X 

axis: 0.25 msec/unit; switches: 1Volt/unit). 
 
 

Figure. 6. Best Circuit Design at Generation 60 

 
 
 

We inject five faults by cuting (set the switch OFF: 
fault0, fault3, fault5) or shorting (set the switch ON: 

fault1, fault2, fault4) one by one the external connections 
between the two FPTAs. Figure 7 shows that the best 
circuit configuration does not achieve the XNOR 



functionality for faults 2, 3, 4, 5. Looking in the 
population at generation 60, we found mutants with 
better responses for faults 2 and 5 as shown in figure 8 
and 10. However we could not find mutants with 
acceptable performance for fault 3 and 4 (figure 10). We 
then re-started the GA with the population of its last run 
evaluating the individuals under fault 3 and fault 4 
conditions [15]. In case of fault 4, and starting with the 
last available population, it took half less generations (30 
generations) to recover than when starting with a 
random population as shown on figure 9. In figure 10 we 
compare the performance of the best circuit and the 
mutants found for each fault. It illustrates that the 
population approach is able to find on-line a circuit 
configuration to resolve the faults.  

 

Figure. 7.  Output of the Best Circuit Configuration obtained 
by population based evolution when 6 faults are injected. (The 

response are shifted in time in all the figures to enhance the 
illustration) 

 
 

Figure. 8. Response of best performing mutants for each fault. 
Further evolution was needed to find a XNOR circuit for fault3 

and fault 4. 

 
 
 

 
 
 
 

 

 

Figure 9. Fitness through generation for Population based and 
Fitness based fault-tolerant approach. 

 

Fig. 10. Comparison between the Fitness of  the Best Circuit 
and Mutant Circuits obtained by a population based evolution. 

 

2. Fitness based Fault-Tolerant Evolution 

In the fitness based fault-tolerant experiment, the 
chromosomes are evaluated in four different circuit 
states: one without fault, and three with a single fault. 
The three faults are fault 2 (switch ON), fault 3 (switch 
OFF) and fault 5 (switch OFF). The fitness of the 
chromosome is the average of the four evaluations. After 
30 generations, the genetic algorithm finds a circuit that 
best satisfied the requirement (Figure 9). The circuit 
configuration is shown on Figure 11.  
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We then inject six faults. As expected the circuit 
achieves the XNOR functionality for each of the three 
faults included explicitly into the fitness function (fault 
2, fault 3, fault 5) (Figure 12). The circuit is also able to 
achieve the XNOR functionality with faults not included 
into the fitness function such as fault 0, fault 1 and fault 
4 but with a lower performance for fault 0 (Figure 13). 
Finally we applied inverse faults to the best circuit 
configuration. It shows that the circuit configuration 
cannot achieve the XNOR functionality when fault 2 is 
inverse. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. Comparison between the fitness of best and 
mutant configuration obtained by a fitness based evolu-

tion. 
 

 
 
 

Figure  11.  Circuit Schematic of the best individual obtained by fitness based approach. 

Figure  12. Output of the best circuit configuration obtained by fitness based evolution when 9 faults are injected 
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6. Lessons Learned 

We compared two approaches for designing a fault-
tolerant field programmable transistor array and we 
conclude from our preliminary experiments that the 
population approach offers the following advantages 
compared to the fitness approach. 
 
• The population approach builds circuits with a better 

performance in a no-fault situation than the circuit 
obtained by the fitness approach, because, in the 
later case, the evolution is constrained by the faults 
imposed to the circuit. But the fitness approach has 
the advantage of achieving a single circuit robust to 
multiple faults. 

 
• The population approach offers an on-line self-repair 

mechanism able to find circuit in the population 
with better performance than the circuits obtained by 
the fitness approach. Although the best circuit con-
figuration for a non-fault situation is not robust, the 
population contains mutant configurations able to 
achieve the desire functionality with the faulty cir-
cuit. They even display a better performance than 
the best configuration and mutants obtained by the 
fitness approach. 

 
• The population approach offers an off-line self-repair 

mechanism able to self-heal circuit in few more gen-
erations with better performance than the circuit ob-
tained by the fitness approach.  

 
• The population approach requires less computation 

than the fitness approach because in the later case 
the genetic algorithm must evaluate the circuits with 
the faults. 

 
These experiments open the way for further 

investigation of the property of fault-tolerant 
evolutionary techniques applied to electronics such as the 
behavior of the fault-tolerant system when arbitrary and 
large number of fauts are injected and the unavaibility 
time is limited. The methodoly can also be addressed by 
combining the population and the fitness approaches, or 
by including in a more explicit way redundancy in the 
system such as explored in the "embryological" 
development approach [13].  

8. Conclusion 

The paper demonstrates the power of evolutionary 
algorithms to design digital fault-tolerant circuit. It 
compares two methods to achieve fault-tolerant design 

one based on fitness and the other based on population.  
It shows that although the classic fault-tolerant design 
approach is able to create a reliable circuit design by 
evaluating the behavior of the circuit when well known 
faults are injected during the evolutionary process, better 
circuit performance and in less computation time for a 
same fault-tolerant degree is achieved by allowing the 
evolutionary design process to be free of all faults 
constraints.  
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